CIPAC/4840/R AMISULBROM (June, 2012)

AMISULBROM (No.789)

Small Scale Collaborative Trial

Small Scale Collaborative Study on the Determination of Amisulbrom in Amisulbrom Technical and Formulation by High Performance Liquid Chromatography

by Keiji Yokouchi Nissan Chemical Industries, Ltd. Regulatory Affairs, Agricultural Division 3-7-1, Kandanishiki-cho, Chiyoda-ku, Tokyo JAPAN

Table of Contents

1. INTRODUCTION	3
1.1 Scope	3
1.2 Samples	3
1.3 Participants	3
2. ANALYTICAL METHOD	3
2.1 Outline of Method	3
2.2 Program of Work	3
3. REMARKS OF PARTICIPANTS	4
3.1 Analytical Conditions	4
3.2 Remarks	5
4. RESULTS AND DISCUSSION	5
5. CONCLUSION	5
Tables	6
Figures	12

1. INTRODUCTION

1.1 Scope

The results of the small scale collaborative trial for amisulbrom technical product, amisulbrom water dispersible granule and amisulbrom suspension concentrate are reported.

1.2 Samples

- 1) Amisulbrom technical (TC-1)
- 2) Amisulbrom technical (TC-2)
- 3) Amisulbrom water dispersible granule (WG)
- 4) Amisulbrum suspension concentrate (SC-1)
- 5) Amisulbrum suspension concentrate (SC-2)

1.3 Participants

Takuto Minamisaki	Sumika Chemical Analysis Service, Ltd. Osaka Laboratory (JAPAN)
Makiko Mukumoto	Sumitomo Chemical Co., Ltd. Organic Synthesis Research Laboratory (JAPAN)
Toru Sugiyama	Nissan Chemical Industries, Ltd. Tsukuba Laboratory (JAPAN)

2. ANALYTICAL METHOD

2.1 Outline of Method

Amisulbrom in the test samples is determined by reversed phase high performance liquid chromatography using an ODS column, UV detection at 254 nm and external standardization as stated in CIPAC/xxxx/m.

2.2 Program of Work The collaborators were requested to:

- conduct duplicate determinations on two different days for each samples;
- inject each sample solution in duplicate and calculate the mean value;
- 3) check linearity before the determination;
- 4) describe operating conditions in detail; and
- 5) report the calibration curve and all chromatograms for each sample.

3. REMARKS OF PARTICIPANTS

Liquid Column Flow rate chromatograph Column Mobile phase Lab temp. (ml/min) Integrator (°C) Acetonitrile -0.01% v/v YMC Pack Pro C18 aqueous **Proposed Method** $(4.6 \text{ mm ID} \times 250)$ 1.0 40 phosphoric mm, $5 \mu m$) acid, 75 + 25(v/v)Acetonitrile -Agilent 1200 0.01% v/vYMC Pack Pro C18 aqueous 1 $(4.6 \text{ mm ID} \times 250)$ 1.0 40 Agilent phosphoric mm, $5 \mu m$) ChemStation acid, 75 + 25(v/v)Acetonitrile -Shimadzu 0.01% v/v SUMIPAX ODS Prominence Z-CLUE aqueous 2 40 1.0 $(4.6 \text{ mm ID} \times 250)$ phosphoric Shimadzu acid, 75 + 25mm, $5 \mu m$) LCsolution (v/v)Acetonitrile -Shimadzu Day 1: 0.01% v/vLC-10A L-column ODS 1.0 aqueous 3 $(4.6 \text{ mm ID} \times 250)$ 40 phosphoric Shimadzu mm, $5 \mu m$) Day 2: acid, 75 + 25LCsolution 0.9 (v/v)

3.1 Analytical Conditions

3.2 Remarks

• Lab.3

- On Day 2 the flow rate was changed to 0.9 ml/min to adjust to the retention time of 9 min.

- The sonication time for the standard and technical was changed to 5 min.

- On Day 2 further sonication for WG formulation was performed for 5 min.

- Note that the standard and technical were easily affected by static electricity during sampling.

4. RESULTS AND DISCUSSION

Three data sets were obtained from three participants. Summary and detailed statistical evaluations are shown in Tables 1 and 2-1 to 2-5. The statistical evaluations were carried out according to ISO 5725. No stragglers and outliers were observed.

5. CONCLUSION

For all samples, the values of RSD_R (reproducibility relative standard deviation) were smaller than those calculated by Horwitz's equation. The proposed method is considered to be appropriate for the determination of amisulbrom in technical, water dispersible granule and suspension concentrate.

JAPAC proposes to proceed with a large scale collaborative trial.

	collabora	ative study	·		
	TC-1	TC-2	WG	SC-1	SC-2
Average (g/kg)	1001.95	1001.74	507.02	179.08	180.17
Number of laboratories	3	3	3	3	3
Repeatability standard deviation (S_r)	7.137	6.105	1.879	0.989	0.691
"Pure" between laboratory standard variation (S_L)	6.319	2.826	NC	0.691	NC
Reproducibility standard deviation (S_R)	9.532	6.727	1.778	1.206	0.616
Repeatability (r)	19.984	17.094	5.261	2.769	1.935
Reproducibility (R)	26.690	18.836	4.978	3.377	1.725
RSD _r	0.712	0.609	0.371	0.552	0.384
RSD _R	0.951	0.672	0.351	0.673	0.342
Horwitz's value	1.999	1.999	2.215	2.591	2.589
NC: Not coloulable					

 Table 1
 Summary of statistical evaluation of amisulbrom small scale

 collaborative study

NC: Not calculable

Table 2-1 Amisulbrom Technical-1									
Lab		Analytical	data (n=4)	Yi	Yi ²	Si	Si ²		
1	Day1 Day2	998.7 991.5	1004.0 1000.2	998.60	997201.96	5.233	27.384		
2	Day1 Day2	999.2 999.5	998.1 991.1	996.98	993969.12	3.963	15.705		
3	Day1 Day2	999.6 1015.5	1022.3 1003.7	1010.28	1020665.68	10.474	109.705		
S2 \$	S1 SUM Yi = 3005.86 S2 SUM Yi ² = 3011836.76 S3 SUM Si ² =								
		Cochran's t C = Si ² may	est (p=3, n=4) < / S3 =	0.718	< 0.798 (p=3, r	n=4, 5%)			
		Grubbs's te Yi min =	est (P=3, n=4) 996.98	Yi max =	1010.28	Y = S1/p = S =	1001.95 7.256		
			-	0.685 1.148	< 1.155 (p=3, 5 < 1.155 (p=3, 5	,			
		Calculation Mean; Y = $S_r^2 = S3 / p$ $S_L^2 = [(pS2)$ $S_R^2 = S_r^2 + S_r^2$	S1 / p = = -S1 ²)/p(p-1)]-(\$	$S_r^2/n) =$	1001.95 50.931 39.924 90.855	S _r = S _L = S _R =	7.137 6.319 9.532		
	1	$r = 2.8 \times S_r$ R = 2.8 x S	=		19.984 26.690				
		$RSD_r = (S_r$	/ mean) x 100 _R / mean) x 100		0.712 0.951				
				1 000					

Horwitz's value = 2 ^[1 - 0.5 x log (Y / 1000)] =

1.999

 RSD_r and RSD_R < 1.999 (Horwitz's value)

ab Ana	lytical o	data (n=4)	Yi	Yi ²	Si	Si ²
)7.3	997.2				
Day2 100)5.0	994.2	1000.93	1001860.86	6.228	38.788
	9.0 6.9	996.9 999.4	998.05	996103.80	1.338	1.790
Dov1 101	2.4	1008.7	390.00	330103.00	1.550	1.790
.n '	0.1	993.8	1006.25	1012539.06	8.439	71.217
1 SUM Yi =			3005.23			
2 SUM Yi ² =				3010503.72		
3 SUM Si ² =						111.795
	no na to	at (n 2 n 1)				
	^{i² max}	est (p=3, n=4)	0.637	< 0.798 (p=3, r	-4.5%	
0 = 3	Παλ	/ 33 =	0.007	< 0.730 (p=3, 1	1-4, 070)	
2) Grubl	os's tes	st (P=3, n=4)				
Yi mir	า = เ	998.05	Yi max =	1006.25	Y = S1/p =	1001.74
		0.00			S =	4.160
	min = 1x - Y :	3.69 4.51				
		$Y_i min)/S =$	0.887	< 1.155 (p=3, 5	5%)	
		max - Y)/S =	1.084	< 1.155 (p=3, 5	,	
,		of r and R		1001 74		
	; Y = S S3 / p :			1001.74 37.265	S _r =	6 105
	•		2/ >			6.105
-		S1 ²)/p(p-1)]-(S	$S_r^2/n) =$	7.985	S _L =	
$S_R^2 =$	$S_{r}^{2} + S_{r}^{2}$	$S_{L}^{2} =$		45.250	S _R =	6.727
r = 2	8 x S _r =			17.094		
	.8 x S _R			18.836		
		mean) x 100 :		0.609		
	$_{\rm P} = (S_{\rm R})$	/ mean) x 100) =	0.672		

Horwitz's value = 2 ^[1 - 0.5 x log (Y / 1000)] =

1.999

 RSD_r and RSD_R < 1.999 (Horwitz's value)

Tab	le 2-3 A	misulbrom \	Water Dispers	ible Granule			
Lab		-	data (n=4)	Yi	Yi ²	Si	Si ²
1	Day1	506.2	511.4				
	Day2	505.7	506.9	507.55	257607.00	2.613	6.828
2	Day1 Day2	505.7 508.2	507.8 507.5	507.30	257353.29	1.105	1.221
	Day2 Day1	504.3	506.2	507.50	201000.29	1.105	1.221
3	Day2	506.1	508.2	506.20	256238.44	1.594	2.540
S13		i =		1521.05			
S2 \$	SUM Yi	² =			771198.73		
S3 :	SUM Si	² =					10.589
			est (p=3, n=4)		0.700 (4 50()	
		C = Si ² max	c / S3 =	0.645	< 0.798 (p=3, r	1=4, 5%)	
	2)	Grubbe's to	st (P=3, n=4)				
		Yimin =	506.20	Yi max =	507.55	Y = S1/p =	507.02
			000.20		001100	S =	0.718
		Y - Yi min =					
		Yi max - Y			/		
			\cdot Yi min)/S =	1.137	< 1.155 (p=3, 5	•	
		upper = (n)	max - Y)/S =	0.743	< 1.155 (p=3, 5	0%)	
	3)	Calculation	of r and R				
		Mean; Y = S			507.02		
		$S_{r}^{2} = S3 / p$	=		3.530	S _r =	1.879
		$S_1^2 = [(pS2)^2]$	-S1 ²)/p(p-1)]-(S ² /n) =	-0.368	S _L =	NC
		$S_R^2 = S_r^2 +$	<i>, ,</i>	. ,	3.162	S _R =	1.778
			-L		00_	- K	
]	r = 2.8 x S _r	=		5.260		
		R = 2.8 x S			4.979		
			/ mean) x 100	=	0.371		
			,				
	l	$R_{\rm SD}$ = (S _F	_x / mean) x 10	0 =	0.351		
		Horwitz's va	ے 2 \\[).5 x log (Y / 10	- 1(00	2.215	
			2.210				

Table 2-3 Amisulbrom Water Dispersible Granule

 RSD_r and RSD_R < 2.215 (Horwitz's value)

Tab	le 2-4 Ar	misulbrom S	Suspension C	oncentrate-1				
Lab		Analytical	data (n=4)	Yi	Yi ²	Si	Si ²	
1	Day1 Day2	179.2 177.6	180.1 178.3	178.80	31969.44	1.086	1.179	
2	Day1	179.1	178.4					
2	Day2	177.8	178.3	178.40	31826.56	0.535	0.286	
3	Day1 Day2	179.8 181.4	178.5 180.4	180.03	32410.80	1.212	1.469	
		=		537.23				
	SUM Yi				96206.80			
S3 :	SUM Si ²	² =					2.934	
		Cochran's t C = Si ² max	est (p=3, n=4) : / S3 =	0.501	< 0.798 (p=3, r	n=4, 5%)		
		Grubbs's te Yi min = Y - Yi min =	st (P=3, n=4) 178.40 0.68	Yi max =	180.03	Y = S1/p = S =	179.08 0.849	
	I	Yi max - Y = lower = (Y -		0.801 1.119	< 1.155 (p=3, 5 < 1.155 (p=3, 5	,		
	,	Calculation						
		Mean; Y = S			179.08	0	0.000	
		$S_r^2 = S3 / p$		- 2	0.978	S _r =	0.989	
			·S1 ²)/p(p-1)]-(0.477	S _L =	0.691		
	$S_R^2 = S_r^2 + S_L^2 =$ 1.455 $S_R =$							
	$r = 2.8 \times S_r = 2.769$							
		R = 2.8 x S	R =	3.377				
		$RSD_r = (S_r)$	/ mean) x 100	0.552				
		RSD _R = (S _R						
		2.591						

Table 2-4 Amisulbrom Suspension Concentrate-1

 $\text{RSD}_{\rm r}\,\text{and}\,\text{RSD}_{\rm R}\,$ < 2.591 (Horwitz's value)

Tab	le 2-5 Ai	misulbrom S	Suspension C	oncentrate-2			
Lab		Analytical	data (n=4)	Yi	Yi ²	Si	Si ²
1	Day1 Day2	181.0 179.5	181.2 179.6	180.33	32518.91	0.900	0.810
2	Day1	180.2	179.7				
	Day2	180.3	180.2	180.10	32436.01	0.271	0.073
3	Day1 Day2	180.9 179.1	180.2 180.1	180.08	32428.81	0.741	0.549
		i =		540.51			
	SUM Yi				97383.73		
S3 :	SUM Si ²	2 =					1.432
		Cochran's t C = Si ² max	est (p=3, n=4) : / S3 =	0.566	< 0.798 (p=3, r	n=4, 5%)	
		Grubbs's te Yimin = Y - Yimin =	st (P=3, n=4) 180.08	Yi max =	180.33	Y = S1/p = S =	180.17 0.139
	I	Yi max - Y : lower = (Y -		0.647 1.151	< 1.155 (p=3, 5 < 1.155 (p=3, 5	,	
		Calculation Mean; $Y = S$	S1/p=		180.17		
		$S_{r}^{2} = S3 / p$			0.477	S _r =	0.691
			-S1²)/p(p-1)]-(-0.098	S _L =	NC	
	:	$S_{R}^{2} = S_{r}^{2} +$	$S_{L}^{2} =$		0.379	S _R =	0.616
	Γ	r = 2.8 x S _r	=		1.935		
		R = 2.8 x S	R =		1.725		
		$RSD_r = (S_r)$	/ mean) x 100	0.384			
		RSD _R = (S _R					
	-	Horwitz's va	2.589				

Table 2-5 Amisulbrom Suspension Concentrate-2

 $\text{RSD}_{\rm r}\,\text{and}\,\text{RSD}_{\rm R}\,$ < 2.589 (Horwitz's value)

Figure 1 Amisulbrom Technical-1

Figure 2 Amisulbrom Technical-2

Figure 3 Amisulbrom Water Dispersible Granule

Figure 4 Amisulbrom Suspension Concentrate-1

Figure 5 Amisulbrom Suspension Concentrate-2