AMISULBROM (No.789) Small Scale Collaborative Trial

Small Scale Collaborative Study on the Determination of Amisulbrom in Amisulbrom Technical and Formulation by High Performance Liquid Chromatography
by
Keiji Yokouchi
Nissan Chemical Industries, Ltd.
Regulatory Affairs, Agricultural Division
3-7-1, Kandanishiki-cho, Chiyoda-ku, Tokyo JAPAN

Table of Contents

1. INTRODUCTION 3
1.1 Scope 3
1.2 Samples 3
1.3 Participants 3
2. ANALYTICAL METHOD 3
2.1 Outline of Method 3
2.2 Program of Work 3
3. REMARKS OF PARTICIPANTS 4
3.1 Analytical Conditions 4
3.2 Remarks 5
4. RESULTS AND DISCUSSION 5
5. CONCLUSION 5
Tables 6
Figures 12

1. INTRODUCTION

1.1 Scope

The results of the small scale collaborative trial for amisulbrom technical product, amisulbrom water dispersible granule and amisulbrom suspension concentrate are reported.

1.2 Samples

1) Amisulbrom technical (TC-1)
2) Amisulbrom technical (TC-2)
3) Amisulbrom water dispersible granule (WG)
4) Amisulbrum suspension concentrate (SC-1)
5) Amisulbrum suspension concentrate (SC-2)
1.3 Participants

Takuto Minamisaki Sumika Chemical Analysis Service, Ltd. Osaka Laboratory (JAPAN)

Makiko Mukumoto

Toru Sugiyama

Sumitomo Chemical Co., Ltd.
Organic Synthesis Research Laboratory (JAPAN)

Nissan Chemical Industries, Ltd.
Tsukuba Laboratory (JAPAN)

2. ANALYTICAL METHOD

2.1 Outline of Method

Amisulbrom in the test samples is determined by reversed phase high performance liquid chromatography using an ODS column, UV detection at 254 nm and external standardization as stated in CIPAC/xxxx/m.

2.2 Program of Work

The collaborators were requested to:

1) conduct duplicate determinations on two different days for each samples;
2) inject each sample solution in duplicate and calculate the mean value;
3) check linearity before the determination;
4) describe operating conditions in detail; and
5) report the calibration curve and all chromatograms for each sample.
3. REMARKS OF PARTICIPANTS
3.1 Analytical Conditions

Lab	Liquid chromatograph Integrator	Column	Mobile phase	Flow rate (ml/min)	Column temp. $\left({ }^{\circ} \mathrm{C}\right)$
	osed Method	YMC Pack Pro C18 (4.6 mm ID $\times 250$ $\mathrm{mm}, 5 \mu \mathrm{~m}$)	$\begin{array}{\|l} \hline \text { Acetonitrile - } \\ 0.01 \% \mathrm{v} / \mathrm{v} \\ \text { aqueous } \\ \text { phosphoric } \\ \text { acid, } 75+25 \\ \text { (v/v) } \\ \hline \end{array}$	1.0	40
1	Agilent 1200 Agilent ChemStation	YMC Pack Pro C18 (4.6 mm ID $\times 250$ $\mathrm{mm}, 5 \mu \mathrm{~m})$	$\begin{array}{\|l} \hline \text { Acetonitrile - } \\ 0.01 \% \mathrm{v} / \mathrm{v} \\ \text { aqueous } \\ \text { phosphoric } \\ \text { acid, } 75+25 \\ \text { (v/v) } \\ \hline \end{array}$	1.0	40
2	Shimadzu Prominence Shimadzu LCsolution	$\begin{aligned} & \text { SUMIPAX ODS } \\ & \text { Z-CLUE } \\ & (4.6 \mathrm{~mm} \text { ID } \times 250 \\ & \mathrm{mm}, 5 \mu \mathrm{~m}) \end{aligned}$	$\begin{array}{\|l} \hline \text { Acetonitrile - } \\ 0.01 \% \mathrm{v} / \mathrm{v} \\ \text { aqueous } \\ \text { phosphoric } \\ \text { acid, } 75+25 \\ \text { (v/v) } \\ \hline \end{array}$	1.0	40
3	Shimadzu LC-10A Shimadzu LCsolution	L-column ODS (4.6 mm ID $\times 250$ mm, $5 \mu \mathrm{~m}$)	Acetonitrile 0.01\% v/v aqueous phosphoric acid, $75+25$ (v/v)	Day 1: 1.0 Day 2: 0.9	40

3.2 Remarks

- Lab. 3
- On Day 2 the flow rate was changed to $0.9 \mathrm{ml} / \mathrm{min}$ to adjust to the retention time of 9 min .
- The sonication time for the standard and technical was changed to 5 min.
- On Day 2 further sonication for WG formulation was performed for 5 min.
- Note that the standard and technical were easily affected by static electricity during sampling.

4. RESULTS AND DISCUSSION

Three data sets were obtained from three participants. Summary and detailed statistical evaluations are shown in Tables 1 and 2-1 to 2-5. The statistical evaluations were carried out according to ISO 5725.
No stragglers and outliers were observed.

5. CONCLUSION

For all samples, the values of $\mathrm{RSD}_{\mathrm{R}}$ (reproducibility relative standard deviation) were smaller than those calculated by Horwitz's equation. The proposed method is considered to be appropriate for the determination of amisulbrom in technical, water dispersible granule and suspension concentrate.
JAPAC proposes to proceed with a large scale collaborative trial.

Table 1 Summary of statistical evaluation of amisulbrom small scale collaborative study

	TC-1	TC-2	WG	SC-1	SC-2
Average (g/kg)	1001.95	1001.74	507.02	179.08	180.17
Number of laboratories	3	3	3	3	3
Repeatability standard deviation (S_{r})	7.137	6.105	1.879	0.989	0.691
"Pure" between laboratory standard variation $\left(\mathrm{S}_{\mathrm{L}}\right)$	6.319	2.826	NC	0.691	NC
Reproducibility standard deviation (S_{R})	9.532	6.727	1.778	1.206	0.616
Repeatability (r)	19.984	17.094	5.261	2.769	1.935
Reproducibility (R)	26.690	18.836	4.978	3.377	1.725
$\mathrm{RSD}_{\mathrm{r}}$	0.712	0.609	0.371	0.552	0.384
$\mathrm{RSD}_{\mathrm{R}}$	0.951	0.672	0.351	0.673	0.342
Horwitz's value	1.999	1.999	2.215	2.591	2.589

NC: Not calculable

Table 2-1 Amisulbrom Technical-1

1) Cochran's test $(p=3, n=4)$
$\mathrm{C}=\mathrm{Si}^{2} \max / \mathrm{S} 3=$
$0.718<0.798(\mathrm{p}=3, \mathrm{n}=4,5 \%)$
2) Grubbs's test $(P=3, n=4)$

$\mathrm{Y}-\mathrm{Yimin}=4.97$
Yi max-Y: 8.33
lower $=(Y-Y i \min) / S=0.685<1.155(p=3,5 \%)$
upper $=(\mathrm{Yi} \max -\mathrm{Y}) / \mathrm{S}=1.148<1.155(\mathrm{p}=3,5 \%)$
3) Calculation of r and R

Mean; $\mathrm{Y}=\mathrm{S} 1 / \mathrm{p}=$	1001.95		
$\mathrm{~S}_{\mathrm{r}}{ }^{2}=\mathrm{S} 3 / \mathrm{p}=$	50.931	$\mathrm{~S}_{\mathrm{r}}=$	7.137
$\mathrm{~S}_{\mathrm{L}}{ }^{2}=\left[\left(\mathrm{pS} 2-\mathrm{S} 1^{2}\right) / \mathrm{p}(\mathrm{p}-1)\right]-\left(\mathrm{S}_{\mathrm{r}}{ }^{2} / \mathrm{n}\right)=$	39.924	$\mathrm{~S}_{\mathrm{L}}=$	6.319
$\mathrm{~S}_{\mathrm{R}}{ }^{2}=\mathrm{S}_{\mathrm{r}}{ }^{2}+\mathrm{S}_{\mathrm{L}}{ }^{2}=$	90.855	$\mathrm{~S}_{\mathrm{R}}=$	9.532

$r=2.8 \times S_{r}=$	19.984
$R=2.8 \times S_{R}=$	26.690
$R S D_{r}=\left(S_{r} /\right.$ mean $) \times 100=$	0.712
$R S D_{R}=\left(S_{R} /\right.$ mean $) \times 100=$	0.951

$$
\text { Horwitz's value }=2 \wedge[1-0.5 \times \log (Y / 1000)]=\quad 1.999
$$

```
RSD
```

Table 2-2 Amisulbrom Technical-2

1) Cochran's test $(p=3, n=4)$
$C=\mathrm{Si}^{2} \max / \mathrm{S} 3=\quad 0.637<0.798(\mathrm{p}=3, \mathrm{n}=4,5 \%)$
2) Grubbs's test $(P=3, n=4)$

$\mathrm{Y}-\mathrm{Yimin}=3.69$
Yi max - Y: 4.51
lower $=(Y-Y i \min) / S=\quad 0.887<1.155(p=3,5 \%)$
upper $=(\mathrm{Yi} \max -\mathrm{Y}) / \mathrm{S}=1.084<1.155(\mathrm{p}=3,5 \%)$
3) Calculation of r and R

Mean; $\mathrm{Y}=\mathrm{S} 1 / \mathrm{p}=$	1001.74		
$\mathrm{~S}_{\mathrm{r}}{ }^{2}=\mathrm{S} 3 / \mathrm{p}=$	37.265	$\mathrm{~S}_{\mathrm{r}}=$	6.105
$\mathrm{~S}_{\mathrm{L}}{ }^{2}=\left[\left(\mathrm{pS} 2-\mathrm{S} 1^{2}\right) / \mathrm{p}(\mathrm{p}-1)\right]-\left(\mathrm{S}_{\mathrm{r}}{ }^{2} / \mathrm{n}\right)=$	7.985	$\mathrm{~S}_{\mathrm{L}}=$	2.826
$\mathrm{~S}_{\mathrm{R}}{ }^{2}=\mathrm{S}_{\mathrm{r}}{ }^{2}+\mathrm{S}_{\mathrm{L}}{ }^{2}=$	45.250	$\mathrm{~S}_{\mathrm{R}}=$	6.727

$r=2.8 \times \mathrm{S}_{\mathrm{r}}=$	17.094
$\mathrm{R}=2.8 \times \mathrm{S}_{\mathrm{R}}=$	18.836
$R \mathrm{RD}_{\mathrm{r}}=\left(\mathrm{S}_{\mathrm{r}} /\right.$ mean $) \times 100=$	0.609
$R \mathrm{RD}_{\mathrm{R}}=\left(\mathrm{S}_{\mathrm{R}} /\right.$ mean $) \times 100=$	0.672

$$
\text { Horwitz's value }=2 \wedge[1-0.5 \times \log (Y / 1000)]=\quad 1.999
$$

```
RSD
```

Table 2-3 Amisulbrom Water Dispersible Granule

1) Cochran's test $(p=3, n=4)$

$$
\mathrm{C}=\mathrm{Si}^{2} \max / \mathrm{S} 3=\quad 0.645 \quad<0.798(\mathrm{p}=3, \mathrm{n}=4,5 \%)
$$

2) Grubbs's test $(P=3, n=4)$

Yimin $=$	506.20	Yimax $=$	507.55
		$Y=S 1 / \mathrm{p}=$	507.02
$S=$	0.718		

$\mathrm{Y}-\mathrm{Yimin}=0.82$
Yi max - Y: 0.53
lower $=(Y-Y i \min) / \mathrm{S}=\quad 1.137<1.155(\mathrm{p}=3,5 \%)$
upper $=(\mathrm{Yi} \max -\mathrm{Y}) / \mathrm{S}=\quad 0.743<1.155(\mathrm{p}=3,5 \%)$
3) Calculation of r and R

Mean; $\mathrm{Y}=\mathrm{S} 1 / \mathrm{p}=$	507.02		
$\mathrm{~S}_{\mathrm{r}}{ }^{2}=\mathrm{S} 3 / \mathrm{p}=$	3.530	$\mathrm{~S}_{\mathrm{r}}=$	1.879
$\mathrm{~S}_{\mathrm{L}}{ }^{2}=\left[\left(\mathrm{pS} 2-\mathrm{S} 1^{2}\right) / \mathrm{p}(\mathrm{p}-1)\right]-\left(\mathrm{S}_{\mathrm{r}}{ }^{2} / n\right)=$	-0.368	$\mathrm{~S}_{\mathrm{L}}=$	NC
$\mathrm{S}_{\mathrm{R}}{ }^{2}=\mathrm{S}_{\mathrm{r}}{ }^{2}+\mathrm{S}_{\mathrm{L}}{ }^{2}=$	3.162	$\mathrm{~S}_{\mathrm{R}}=$	1.778

$r=2.8 \times S_{r}=$	5.260
$R=2.8 \times S_{R}=$	4.979
$R S D_{r}=\left(S_{r} /\right.$ mean $) \times 100=$	0.371
$R S_{R}=\left(S_{R} /\right.$ mean $) \times 100=$	0.351

$$
\begin{aligned}
& \text { Horwitz's value }=2 \wedge[1-0.5 \times \log (\mathrm{Y} / 1000)]= \\
& \mathrm{RSD}_{\mathrm{r}} \text { and } \mathrm{RSD} \mathrm{R}_{\mathrm{R}}<2.215 \text { (Horwitz's value) }
\end{aligned}
$$

Table 2-4 Amisulbrom Suspension Concentrate-1

1) Cochran's test $(p=3, n=4)$

$$
\mathrm{C}=\mathrm{Si}^{2} \max / \mathrm{S} 3=\quad 0.501<0.798(\mathrm{p}=3, \mathrm{n}=4,5 \%)
$$

2) Grubbs's test $(P=3, n=4)$

| Yimin $=$178.40 Yimax $=$
 180.03 | $Y=S 1 / \mathrm{p}=$ | 179.08 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Y}=$ | | 0.849 |

$\mathrm{Y}-\mathrm{Yimin}=0.68$
Yi max - Y: 0.95
lower $=(Y-Y i \min) / \mathrm{S}=0.801<1.155(\mathrm{p}=3,5 \%)$
upper $=($ Yi max -Y$) / \mathrm{S}=1.119<1.155(\mathrm{p}=3,5 \%)$
3) Calculation of r and R

Mean; $\mathrm{Y}=\mathrm{S} 1 / \mathrm{p}=$	179.08		
$\mathrm{~S}_{\mathrm{r}}{ }^{2}=\mathrm{S} 3 / \mathrm{p}=$	0.978	$\mathrm{~S}_{\mathrm{r}}=$	0.989
$\mathrm{~S}_{\mathrm{L}}{ }^{2}=\left[\left(\mathrm{pS} 2-\mathrm{S} 1^{2}\right) / \mathrm{p}(\mathrm{p}-1)\right]-\left(\mathrm{S}_{\mathrm{r}}{ }^{2} / n\right)=$	0.477	$\mathrm{~S}_{\mathrm{L}}=$	0.691
$\mathrm{~S}_{\mathrm{R}}{ }^{2}=\mathrm{S}_{\mathrm{r}}{ }^{2}+\mathrm{S}_{\mathrm{L}}{ }^{2}=$	1.455	$\mathrm{~S}_{\mathrm{R}}=$	1.206

$r=2.8 \times S_{r}=$	2.769
$R=2.8 \times S_{R}=$	3.377
$R S D_{r}=\left(S_{r} /\right.$ mean $) \times 100=$	0.552
$R S D_{R}=\left(S_{R} /\right.$ mean $) \times 100=$	0.673

$$
\text { Horwitz's value }=2 \wedge[1-0.5 \times \log (Y / 1000)]=
$$

```
RSD
```

Table 2-5 Amisulbrom Suspension Concentrate-2

1) Cochran's test $(p=3, n=4)$

$$
\mathrm{C}=\mathrm{Si}^{2} \max / \mathrm{S} 3=\quad 0.566 \quad<0.798(\mathrm{p}=3, \mathrm{n}=4,5 \%)
$$

2) Grubbs's test $(P=3, n=4)$

Yimin $=180.08$	Yimax $=$	180.33	$Y=S 1 / \mathrm{p}=$	180.17
$\mathrm{~S}=$	0.139			

$\mathrm{Y}-\mathrm{Yimin}=0.09$
Yi max - Y: 0.16
lower $=(Y-Y i \min) / S=0.647<1.155(p=3,5 \%)$
upper $=(\mathrm{Yi} \max -\mathrm{Y}) / \mathrm{S}=1.151<1.155(\mathrm{p}=3,5 \%)$
3) Calculation of r and R

Mean; $\mathrm{Y}=\mathrm{S} 1 / \mathrm{p}=$	180.17		
$\mathrm{~S}_{\mathrm{r}}{ }^{2}=\mathrm{S} 3 / \mathrm{p}=$	0.477	$\mathrm{~S}_{\mathrm{r}}=$	0.691
$\mathrm{~S}_{\mathrm{L}}{ }^{2}=\left[\left(\mathrm{pS} 2-\mathrm{S} 1^{2}\right) / \mathrm{p}(\mathrm{p}-1)\right]-\left(\mathrm{S}_{\mathrm{r}}{ }^{2} / \mathrm{n}\right)=$	-0.098	$\mathrm{~S}_{\mathrm{L}}=$	NC
$\mathrm{S}_{\mathrm{R}}{ }^{2}=\mathrm{S}_{\mathrm{r}}{ }^{2}+\mathrm{S}_{\mathrm{L}}{ }^{2}=$	0.379	$\mathrm{~S}_{\mathrm{R}}=$	0.616

$r=2.8 \times S_{r}=$	1.935
$R=2.8 \times S_{R}=$	1.725
$R S D_{r}=\left(S_{r} /\right.$ mean $) \times 100=$	0.384
$R S_{R}=\left(S_{R} /\right.$ mean $) \times 100=$	0.342

$$
\begin{aligned}
& \text { Horwitz's value }=2 \wedge[1-0.5 \times \log (\mathrm{Y} / 1000)]= \\
& R \mathrm{RD}_{\mathrm{r}} \text { and } R S D_{\mathrm{R}}<2.589 \text { (Horwitz's value) }
\end{aligned}
$$

Figure 1 Amisulbrom Technical-1

Figure 2 Amisulbrom Technical-2

Figure 3 Amisulbrom Water Dispersible Granule

Figure 4 Amisulbrom Suspension Concentrate-1

Figure 5 Amisulbrom Suspension Concentrate-2

